当前位置:首页 » 市场窍门 » 大数据分析在股票市场应用

大数据分析在股票市场应用

发布时间: 2021-03-15 17:38:44

1. 最近学金融,好多知识看不懂啊::>_<:: 请结合大数据的理念对数据分析和数据挖掘能在金融市场的

首先是通过大数据可以分析客户的个人信息,收入,风险偏好等,可以推荐相应的金融产品,如果哪些年龄段和工作的人群适合基金,保险和其它有价证券;
其次是金融产品的开发上,主要有保险产品和一些其它产品,通过发病率,灾情概率等进行精算,开发出保险产品,一些其它的金融新产品也会涉及到数据分析;
再次是金融产品的定价及投资分析上,很多因素都会影响金融产品,如股票,期货,现货等,通过数据挖掘,找出其影响因素,进行价格分析。
大数据和数据挖掘主要有这几方面的应用,当然还有其它的方面,很多论述金融与数据分析的书中有很多的,可以进一步研究,还望采纳。

2. 如何用大数据炒股

我们如今生活在一个数据爆炸的世界里。网络每天响应超过60亿次的搜索请求,日处理数据超过100PB,相当于6000多座中国国家图书馆的书籍信息量总和。新浪微博每天都会发布上亿条微博。在荒无人烟的郊外,暗藏着无数大公司的信息存储中心,24小时夜以继日地运转着。
克托·迈尔-舍恩伯格在《大数据时代》一书中认为,大数据的核心就是预测,即只要数据丰富到一定程度,就可预测事情发生的可能性。例如,“从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性”,或者通过一个人穿过马路的速度,预测车子何时应该减速从而让他及时穿过马路。

那么,如果把这种预测能力应用在股票投资上,又会如何?

目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰。中国的中证广发网络百发100指数基金(下称百发100),上线四个多月以来已上涨68%。

和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,并且将这些非结构化数据进行量化,从而让模型可以吸收。

由于大数据模型对成本要求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。

量化非结构数据

不要小看大数据的本领,正是这项刚刚兴起的技术已经创造了无数“未卜先知”的奇迹。

2014年,网络用大数据技术预测命中了全国18卷中12卷高考作文题目,被网友称为“神预测”。网络公司人士表示,在这个大数据池中,包含互联网积累的用户数据、历年的命题数据以及教育机构对出题方向作出的判断。

在2014年巴西世界杯比赛中,Google亦通过大数据技术成功预测了16强和8强名单。

从当年英格兰报社的信鸽、费城股票交易所的信号灯到报纸电话,再到如今的互联网、云计算、大数据,前沿技术迅速在投资领域落地。在股票策略中,大数据日益崭露头角。

做股票投资策略,需要的大数据可以分为结构化数据和非结构化数据。结构化数据,简单说就是“一堆数字”,通常包括传统量化分析中常用的CPI、PMI、市值、交易量等专业信息;非结构化数据就是社交文字、地理位置、用户行为等“还没有进行量化的信息”。

量化非结构化就是用深度模型替代简单线性模型的过程,其中所涉及的技术包括自然语言处理、语音识别、图像识别等。

金融大数据平台-通联数据CEO王政表示,通联数据采用的非结构化数据可以分为三类:第一类和人相关,包括社交言论、消费、去过的地点等;第二类与物相关,如通过正在行驶的船只和货车判断物联网情况;第三类则是卫星监测的环境信息,包括汽车流、港口装载量、新的建筑开工等情况。

卫星监测信息在美国已被投入使用,2014年Google斥资5亿美元收购了卫星公司Skybox,从而可以获得实施卫星监测信息。

结构化和非结构化数据也常常相互转化。“结构化和非结构化数据可以形象理解成把所有数据装在一个篮子里,根据应用策略不同相互转化。例如,在搜索频率调查中,用户搜索就是结构化数据;在金融策略分析中,用户搜索就是非结构化数据。”网络公司人士表示。

华尔街拿着丰厚薪水的分析师们还不知道,自己的雇主已经将大量资本投向了取代自己的机器。
2014年11月23日,高盛向Kensho公司投资1500万美元,以支持该公司的大数据平台建设。该平台很像iPhone里的Siri,可以快速整合海量数据进行分析,并且回答投资者提出的各种金融问题,例如“下月有飓风,将对美国建材板块造成什么影响?”

在Kensho处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等。这类信息通常是电脑和模型难以消化的。因此,Kensho的CEO Daniel Nadler认为,华尔街过去是基于20%的信息做出100%的决策。

既然说到高盛,顺便提一下,这家华尔街老牌投行如今对大数据可谓青睐有加。除了Kensho,高盛还和Fortress信贷集团在两年前投资了8000万美元给小额融资平台On Deck Capital。这家公司的核心竞争力也是大数据,它利用大数据对中小企业进行分析,从而选出值得投资的企业并以很快的速度为之提供短期贷款。

捕捉市场情绪

上述诸多非结构化数据,归根结底是为了获得一个信息:市场情绪。

在采访中,2013年诺贝尔经济学奖得主罗伯特•席勒的观点被无数采访对象引述。可以说,大数据策略投资的创业者们无一不是席勒的信奉者。

席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。
然而,在大数据技术诞生之前,市场情绪始终无法进行量化。

回顾人类股票投资发展史,其实就是将影响股价的因子不断量化的过程。

上世纪70年代以前,股票投资是一种定性的分析,没有数据应用,而是一门主观的艺术。随着电脑的普及,很多人开始研究驱动股价变化的规律,把传统基本面研究方法用模型代替,市盈率、市净率的概念诞生,量化投资由此兴起。

量化投资技术的兴起也带动了一批华尔街大鳄的诞生。例如,巴克莱全球投资者(BGI)在上世纪70年代就以其超越同行的电脑模型成为全球最大的基金管理公司;进入80年代,另一家基金公司文艺复兴(Renaissance)年均回报率在扣除管理费和投资收益分成等费用后仍高达34%,堪称当时最佳的对冲基金,之后十多年该基金资产亦十分稳定。

“从主观判断到量化投资,是从艺术转为科学的过程。”王政表示,上世纪70年代以前一个基本面研究员只能关注20只到50只股票,覆盖面很有限。有了量化模型就可以覆盖所有股票,这就是一个大的飞跃。此外,随着计算机处理能力的发展,信息的用量也有一个飞跃变化。过去看三个指标就够了,现在看的指标越来越多,做出的预测越来越准确。

随着21世纪的到来,量化投资又遇到了新的瓶颈,就是同质化竞争。各家机构的量化模型越来越趋同,导致投资结果同涨同跌。“能否在看到报表数据之前,用更大的数据寻找规律?”这是大数据策略创业者们试图解决的问题。

于是,量化投资的多米诺骨牌终于触碰到了席勒理论的第三层变量——市场情绪。

计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。

基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。

海外就有学术研究指出,公司的名称或者相关关键词的搜索量,与该公司的股票交易量正相关。德国科学家Tobias Preis就进行了如此研究:Tobias利用谷歌搜索引擎和谷歌趋势(Google Trends),以美国标普500指数的500只股票为其样本,以2004年至2010年为观察区间,发现谷歌趋势数据的公司名称搜索量和对应股票的交易量,在每周一次的时间尺度上有高度关联性。也就是说,当某个公司名称在谷歌的搜索量活动增加时,无论股票的价格是上涨或者下跌,股票成交量与搜索量增加;反之亦然,搜索量下降,股票成交量下降。以标普500指数的样本股为基础,依据上述策略构建的模拟投资组合在六年的时间内获得了高达329%的累计收益。

在美国市场上,还有多家私募对冲基金利用Twitter和Facebook的社交数据作为反映投资者情绪和市场趋势的因子,构建对冲投资策略。利用互联网大数据进行投资策略和工具的开发已经成为世界金融投资领域的新热点。

保罗·霍丁管理的对冲基金Derwent成立于2011年5月,注册在开曼群岛,初始规模约为4000万美元, 2013年投资收益高达23.77%。该基金的投资标的包括流动性较好的股票及股票指数产品。
通联数据董事长肖风在《投资革命》中写道,Derwent的投资策略是通过实时跟踪Twitter用户的情绪,以此感知市场参与者的“贪婪与恐惧”,从而判断市场涨跌来获利。

在Derwent的网页上可以看到这样一句话:“用实时的社交媒体解码暗藏的交易机会。”保罗·霍丁在基金宣传册中表示:“多年以来,投资者已经普遍接受一种观点,即恐惧和贪婪是金融市场的驱动力。但是以前人们没有技术或数据来对人类情感进行量化。这是第四维。Derwent就是要通过即时关注Twitter中的公众情绪,指导投资。”

另一家位于美国加州的对冲基金MarketPsych与汤普森·路透合作提供了分布在119个国家不低于18864项独立指数,比如每分钟更新的心情状态(包括乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等),而这些指数都是通过分析Twitter的数据文本,作为股市投资的信号。

此类基金还在不断涌现。金融危机后,几个台湾年轻人在波士顿组建了一家名为FlyBerry的对冲基金,口号是“Modeling the World(把世界建模)”。它的投资理念全部依托大数据技术,通过监测市场舆论和行为,对投资做出秒速判断。

关于社交媒体信息的量化应用,在股票投资之外的领域也很常见:Twitter自己也十分注重信息的开发挖掘,它与DataSift和Gnip两家公司达成了一项出售数据访问权限的协议,销售人们的想法、情绪和沟通数据,从而作为顾客的反馈意见汇总后对商业营销活动的效果进行判断。从事类似工作的公司还有DMetics,它通过对人们的购物行为进行分析,寻找影响消费者最终选择的细微原因。

回到股票世界,利用社交媒体信息做投资的公司还有StockTwits。打开这家网站,首先映入眼帘的宣传语是“看看投资者和交易员此刻正如何讨论你的股票”。正如其名,这家网站相当于“股票界的Twitter”,主要面向分析师、媒体和投资者。它通过机器和人工相结合的手段,将关于股票和市场的信息整理为140字以内的短消息供用户参考。

此外,StockTwits还整合了社交功能,并作为插件可以嵌入Twitter、Facebook和LinkedIn等主要社交平台,让人们可以轻易分享投资信息。

另一家公司Market Prophit也很有趣。这家网站的宣传语是“从社交媒体噪音中提炼市场信号”。和StockTwits相比,Market Prophit更加注重大数据的应用。它采用了先进的语义分析法,可以将Twitter里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议。网站还根据语义量化,每天公布前十名和后十名的股票热度榜单。网站还设计了“热度地图”功能,根据投资者情绪和意见,按照不同板块,将板块内的个股按照颜色深浅进行标注,谁涨谁跌一目了然。

中国原创大数据指数

尽管大数据策略投资在美国貌似炙手可热,但事实上,其应用尚仅限于中小型对冲基金和创业平台公司。大数据策略投资第一次被大规模应用,应归于中国的百发100。

网络金融中心相关负责人表示,与欧美等成熟资本市场主要由理性机构投资者构成相比,东亚尤其是中国的股票类证券投资市场仍以散户为主,因此市场受投资者情绪和宏观政策性因素影响很大。而个人投资者行为可以更多地反映在互联网用户行为大数据上,从而为有效地预测市场情绪和趋势提供了可能。这也就是中国国内公募基金在应用互联网大数据投资方面比海外市场并不落后、甚至领先的原因。

百发100指数由网络、中证指数公司、广发基金联合研发推出,于2014年7月8日正式对市场发布,实盘运行以来一路上涨,涨幅超过60%。跟踪该指数的指数基金规模上限为30亿份,2014年9月17日正式获批,10月20日发行时一度创下26小时疯卖18亿份的“神话”。

外界都知道百发100是依托大数据的指数基金,但其背后的细节鲜为人知。

百发100数据层面的分析分为两个层面,即数据工厂的数据归集和数据处理系统的数据分析。其中数据工厂负责大数据的收集分析,例如将来源于互联网的非结构化数据进行指标化、产品化等数据量化过程;数据处理系统,可以在数据工厂递交的大数据中寻找相互统计关联,提取有效信息,最终应用于策略投资。

“其实百发100是在传统量化投资技术上融合了基于互联网大数据的市场走势和投资情绪判断。”业内人士概括道。

和传统量化投资类似,百发100对样本股的甄选要考虑财务因子、基本面因子和动量因子,包括净资产收益率(ROE)、资产收益率(ROA)、每股收益增长率(EPS)、流动负债比率、企业价值倍数(EV/EBITDA)、净利润同比增长率、股权集中度、自由流通市值以及最近一个月的个股价格收益率和波动率等。

此外,市场走势和投资情绪是在传统量化策略基础上的创新产物,也是百发100的核心竞争力。接近网络的人士称,市场情绪因子对百发100基金起决定性作用。

网络金融中心相关负责人是罗伯特•席勒观点的支持者。他认为,投资者行为和情绪对资产价格、市场走势有着巨大的影响。因此“通过互联网用户行为大数据反映的投资市场情绪、宏观经济预期和走势,成为百发100指数模型引入大数据因子的重点”。

传统量化投资主要着眼点在于对专业化金融市场基本面和交易数据的应用。但在网络金融中心相关业务负责人看来,无论是来源于专业金融市场的结构化数据,还是来源于互联网的非结构化数据,都是可以利用的数据资源。因此,前文所述的市场情绪数据,包括来源于互联网的用户行为、搜索量、市场舆情、宏观基本面预期等等,都被网络“变废为宝”,从而通过互联网找到投资者参与特征,选出投资者关注度较高的股票。

“与同期沪深300指数的表现相较,百发100更能在股票市场振荡时期、行业轮动剧烈时期、基本面不明朗时期抓住市场热点、了解投资者情绪、抗击投资波动风险。”网络金融中心相关负责人表示。

百发100选取的100只样本股更换频率是一个月,调整时间为每月第三周的周五。

业内人士指出,百发100指数的月收益率与中证100、沪深300、中证500的相关性依次提升,说明其投资风格偏向中小盘。

但事实并非如此。从样本股的构成来说,以某一期样本股为例,样本股总市值6700亿元,占A股市值4.7%。样本股的构成上,中小板21只,创业板4只,其余75只样本股均为大盘股。由此可见,百发100还是偏向大盘为主、反映主流市场走势。

样本股每个月的改变比例都不同,最极端的时候曾经有60%进行了换仓。用大数据预测热点变化,市场热点往往更迭很快;但同时也要考虑交易成本。两方面考虑,网络最后测算认为一个月换一次仓位为最佳。

样本股对百发100而言是核心机密——据说“全世界只有基金经理和指数编制机构负责人两个人知道”——都是由机器决定后,基金经理分配给不同的交易员建仓买入。基金经理也没有改变样本股的权利。

展望未来,网络金融中心相关负责人踌躇满志,“百发100指数及基金的推出,只是我们的开端和尝试,未来将形成多样化、系列投资产品。”

除了百发100,目前市场上打着大数据旗帜的基金还有2014年9月推出的南方-新浪I100和I300指数基金。

南方-新浪I100和I300是由南方基金、新浪财经和深圳证券信息公司三方联合编制的。和百发100类似,也是按照财务因子和市场情绪因子进行模型打分,按照分值将前100和前300名股票构成样本股。推出至今,这两个指数基金分别上涨了10%左右。

正如百发100的市场情绪因子来自网络,南方-新浪I100和I300的市场情绪因子全部来自新浪平台。其中包括用户在新浪财经对行情的访问热度、对股票的搜索热度;用户在新浪财经对股票相关新闻的浏览热度;股票相关微博的多空分析数据等。

此外,阿里巴巴旗下的天弘基金也有意在大数据策略上做文章。据了解,天弘基金将和阿里巴巴合作,推出大数据基金产品,最早将于2015年初问世。

天弘基金机构产品部总经理刘燕曾对媒体表示,“在传统的调研上,大数据将贡献于基础资产的研究,而以往过度依赖线下研究报告。大数据将视野拓展至了线上的数据分析,给基金经理选股带来新的逻辑。”

在BAT三巨头中,腾讯其实是最早推出指数基金的。腾讯与中证指数公司、济安金信公司合作开发的“中证腾安价值100指数”早在2013年5月就发布了,号称是国内第一家由互联网媒体与专业机构编制发布的A股指数。不过,业内人士表示,有关指数并没有真正应用大数据技术。虽然腾讯旗下的微信是目前最热的社交平台,蕴藏了大量的社交数据,但腾讯未来怎么开发,目前还并不清晰。

大数据投资平台化

中欧商学院副教授陈威如在其《平台战略》一书中提到,21世纪将成为一道分水岭,人类商业行为将全面普及平台模式,大数据金融也不例外。

然而,由于大数据模型对成本要求极高,就好比不可能每家公司都搭建自己的云计算系统一样,让每家机构自己建设大数据模型,从数据来源和处理技术方面看都是不现实的。业内人士认为,大数据未来必将成为平台化的服务。

目前,阿里、网络等企业都表示下一步方向是平台化。

蚂蚁金服所致力搭建的平台,一方面包括招财宝一类的金融产品平台,另一方面包括云计算、大数据服务平台。蚂蚁金服人士说,“我们很清楚自己的优势不是金融,而是包括电商、云计算、大数据等技术。蚂蚁金服希望用这些技术搭建一个基础平台,把这些能力开放出去,供金融机构使用。”

网络亦是如此。接近网络的人士称,未来是否向平台化发展,目前还在讨论中,但可以确定的是,“网络不是金融机构,目的不是发产品,百发100的意义在于打造影响力,而非经济效益。”
当BAT还在摸索前行时,已有嗅觉灵敏者抢占了先机,那就是通联数据。

通联数据股份公司(DataYes)由曾任博时基金副董事长肖风带队创建、万向集团投资成立,总部位于上海,公司愿景是“让投资更容易,用金融服务云平台提升投资管理效率和投研能力”。该平台7月上线公测,目前已拥有130多家机构客户,逾万名个人投资者。

通联数据目前有四个主要平台,分别是通联智能投资研究平台、通联金融大数据服务平台、通联多资产投资管理平台和金融移动办公平台。

通联智能投资研究平台包括雅典娜-智能事件研究、策略研究、智能研报三款产品,可以对基于自然语言的智能事件进行策略分析,实时跟踪市场热点,捕捉市场情绪。可以说,和百发100类似,其核心技术在于将互联网非结构化数据的量化使用。

通联金融大数据服务平台更侧重于专业金融数据的分析整理。它可以提供公司基本面数据、国内外主要证券、期货交易所的行情数据、公司公告数据、公关经济、行业动态的结构化数据、金融新闻和舆情的非结构化数据等。

假如将上述两个平台比作“收割机”,通联多资产投资管理平台就是“厨房”。在这个“厨房”里,可以进行全球跨资产的投资组合管理方案、订单管理方案、资产证券化定价分析方案等。

通联数据可以按照主题热点或者自定义关键字进行分析,构建知识图谱,将相关的新闻和股票提取做成简洁的分析框架。例如用户对特斯拉感兴趣,就可以通过主题热点看到和特斯拉相关的公司,并判断这个概念是否值得投资。“过去这个搜集过程要花费几天时间,现在只需要几分钟就可以完成。”王政表示。

“通联数据就好比一家餐馆,我们把所有原料搜集来、清洗好、准备好,同时准备了一个锅,也就是大数据存储平台。研究员和基金经理像厨师一样,用原料、工具去‘烹制’自己的策略。”王政形容道。

大数据在平台上扮演的角色,就是寻找关联关系。人类总是习惯首先构建因果关系,继而去倒推和佐证。机器学习则不然,它可以在海量数据中查获超越人类想象的关联关系。正如维克托`迈尔-舍恩伯格在《大数据时代》中所提到的,社会需要放弃它对因果关系的渴求,而仅需关注相互关系。

例如,美国超市沃尔玛通过大数据分析,发现飓风用品和蛋挞摆在一起可以提高销量,并由此创造了颇大的经济效益。如果没有大数据技术,谁能将这毫无关联的两件商品联系在一起?
通联数据通过机器学习,也能找到传统量化策略无法发现的市场联系。其中包括各家公司之间的资本关系、产品关系、竞争关系、上下游关系,也包括人与人之间的关系,例如管理团队和其他公司有没有关联,是否牵扯合作等。

未来量化研究员是否将成为一个被淘汰的职业?目前研究员的主要工作就是收集整理数据,变成投资决策,而之后这个工作将更多由机器完成。

“当初医疗科技发展时,人们也认为医生会被淘汰,但其实并不会。同理,研究员也会一直存在,但他们会更注重深入分析和调研,初级的数据搜集可以交给机器完成。”王政表示。
但当未来大数据平台并广泛应用后,是否会迅速挤压套利空间?这也是一个问题。回答根据网上资料整理

3. 证券行业大数据可以运用在哪些方面

,证券行业数据是指券商还是股票分析。
如果券商行业的话,主要看经纪业务,以及其占比是否在下降,产品销售业务利润是否在上升。此外,其他业务渠道是否在扩宽发展,比如投行业务。

4. 大数据的应用领域有哪些

1.了解和定位客户

这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。

利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。

滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。

除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。

2.

改善医疗保健和公共卫生

大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!

苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。

大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。

更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。

3.提供个性化服务

大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。

4.

了解和优化业务流程

大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。

人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。

如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。


5.

改善城市和国家建设

大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。

加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。


6.提升科学研究

大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。

7.提升机械设备性能

大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。

8.强化安全和执法能力

大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。

2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。

9.

提高体育运动技能

如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。

还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。

10.金融交易

大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

更多精彩:14_spark体系之分布式计算课程Spark 集群搭建+S

5. 统计学和大数据分析在股市里哪个更有用

数据分析一般就是统计学里边的,统计就是专门分析数据的!

6. 通过大数据分析股票,对购买决策有何帮助

毫无作用,因为你拿不到真实的数据,中国股市信息不对称问题由来已久,而且尚未解决,数据分析是有作用的,但是只限于基本面,其他的数据分析甚至会误导你的决策

7. 大数据应用到了哪些市场

你好 很高兴回答你的问题
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹,下面详细介绍一下大数据在各行各业的具体应用。
制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程
金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
餐饮行业,利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式
电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施
能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本
城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防
生物医学,大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘
体育娱乐,大数据可以帮助我们训练球队,决定投拍哪种题财的影视作品,以及预测比赛结果
安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响
Bingdata优网助帮汇聚多平台采集的海量数据,通过大数据技术的分析及预测能力为企业提供智能化的数据分析、运营优化、投放决策、精准营销、竞品分析等整合营销服务。
北京优网助帮信息技术有限公司(简称优网助帮)是以大数据为基础,并智能应用于整合营销的大数据公司,隶属于亨通集团。Bingdata是其旗下品牌。优网助帮团队主要来自阿里、腾讯、网络、金山、搜狐及移动、电信、联通、华为、爱立信等著名企业的技术大咖,兼有互联网与通信运营商两种基因,为大数据的算法分析提供强大的技术支撑。
望采纳 谢谢

8. 大数据技术在金融行业有哪些应用前景

大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到10年,金融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。

9. 大数据可以应用在哪些方面

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(9)大数据分析在股票市场应用扩展阅读:

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:

网络--大数据

10. 股票市场的大数据量化分析是怎么做的

会做的都不会和你说的,简单来说就是收集数据,实现大数据ai

热点内容
个人股票开户数量限制 发布:2025-01-07 07:32:33 浏览:126
天津城投集团上市公司 发布:2025-01-07 07:32:33 浏览:357
股票交易印花税何时收 发布:2025-01-07 07:31:51 浏览:307
杜邦分析股票 发布:2025-01-07 07:31:47 浏览:897
股票提现银行卡要多久到账户 发布:2025-01-07 07:21:21 浏览:694
优质股票的指标是什么意思 发布:2025-01-07 07:20:38 浏览:608
光伏行业市盈率 发布:2025-01-07 07:16:51 浏览:610
美股红黄蓝教育代码 发布:2025-01-07 07:13:46 浏览:107
宁波炒股开户地址 发布:2025-01-07 07:03:53 浏览:416
股票的均价和限价是什么意思 发布:2025-01-07 06:58:29 浏览:825