基因編輯技術股票
❶ 除了CRISPR,還知道哪些基因編輯技術
ZFN
ZFN,即鋅指核糖核酸酶,由一個 DNA 識別域和一個非特異性核酸內切酶構成。DNA 識別域是由一系列 Cys2-His2鋅指蛋白(zinc-fingers)串聯組成(一般 3~4 個),每個鋅指蛋白識別並結合一個特異的三聯體鹼基。鋅指蛋白源自轉錄調控因子家族(transcription factor family),在真核生物中從酵母到人類廣泛存在,形成alpha-beta-beta二級結構。其中alpha螺旋的16氨基酸殘基決定鋅指的DNA結合特異性,骨架結構保守。對決定DNA結合特異性的氨基酸引入序列的改變可以獲得新的DNA結合特異性。多個鋅指蛋白可以串聯起來形成一個鋅指蛋白組識別一段特異的鹼基序列,具有很強的特異性和可塑性,很適合用於設計ZFNs。與鋅指蛋白組相連的非特異性核酸內切酶來自FokI的C端的96個氨基酸殘基組成的DNA剪切域(Kim et al., 1996)。FokI是來自海床黃桿菌的一種限制性內切酶,只在二聚體狀態時才有酶切活性(Kim et al., 1994),每個FokI單體與一個鋅指蛋白組相連構成一個ZFN,識別特定的位點,當兩個識別位點相距恰當的距離時(6~8 bp),兩個單體ZFN相互作用產生酶切功能。從而達到 DNA 定點剪切的目的。
TALEN
TALENs中文名是轉錄激活因子樣效應物核酸酶,TALENs是一種可靶向修飾特異DNA序列的酶,它藉助於TAL效應子一種由植物細菌分泌的天然蛋白來識別特異性DNA鹼基對。TAL效應子可被設計識別和結合所有的目的DNA序列。對TAL效應子附加一個核酸酶就生成了TALENs。TAL效應核酸酶可與DNA結合並在特異位點對DNA鏈進行切割,從而導入新的遺傳物質。相對鋅指核酸酶(zinc-finger nuclease, ZFN)而言,TALEN能夠靶向更長的基因序列,而且也更容易構建。但是直到現在,人們一直都沒有一種低成本的而且公開能夠獲得的方法來快速地產生大量的TALENs。
CRISPR
CRISPR是生命進化歷史上,細菌和病毒進行斗爭產生的免疫武器,簡單說就是病毒能把自己的基因整合到細菌,利用細菌的細胞工具為自己的基因復制服務,細菌為了將病毒的外來入侵基因清除,進化出CRISPR系統,利用這個系統,細菌可以不動聲色地把病毒基因從自己的染色體上切除,這是細菌特有的免疫系統。微生物學家10年前就掌握了細菌擁有多種切除外來病毒基因的免疫功能,其中比較典型的模式是依靠一個復合物,該復合物能在一段RNA指導下,定向尋找目標DNA序列,然後將該序列進行切除。許多細菌免疫復合物都相對復雜,其中科學家掌握了對一種蛋白Cas9的操作技術,並先後對多種目標細胞DNA進行切除。以往研究表明,通過這些介入,CRISPR能使基因組更有效地產生變化或突變,效率比TALEN(轉錄激活因子類感受器核酸酶)等其他基因編輯技術更高。但最近研究發現,雖然CRISPR有許多優點,在人類癌細胞系列中,它也可能產生大量「誤傷目標」,尤其是對不希望改變的基因做修改。
三種系統的比較
那麼,可能會有人疑問了,既然如此,這三種系統的區別和聯系又是什麼呢?小編特意從有效性,特異性,載體性及其它四個方面,進行了一個小小的總結。
有效性
在不同的基因位點基因靶向性的有效性都是不同的,並且這也依賴於每種細胞的轉染的效率。因此,只能點對點的比較靶向位點,細胞系和轉染方法,這樣的比較才有意義。基於我們課題組和其他課題組的ZFN和TALENs的靶向效率的實驗,我們在細胞系水平上進行了比較,雖然他們可能與不同的突變特徵有關。Chen的課題組的最近的研究進行了大規模的體外分析,發現TALENs在使用與上下游相關的序列的時候比ZFNs顯著的具有更多的突變產生。另一個組比較了TALENs和CRISPRs在人類ESCs細胞中的情況,觀察到,通過用CRISPR更換掉TALENs,在其他方面條件相同的情況下,通過產生更多的基因突變的克隆,本質上提高了效率。最近,功能上重新編碼的TALENs(reTALENs)已經得到了發展,並且在人類的iPSCs細胞中的基因編輯的有效性相比較於CRISPR得到了提高。但是這個研究發現,CRISPR比reTALENs能夠實現7-8倍的同源重組效率,並且其一定程度的比HE更有效率,擋雨ODN捐贈者進行比較。
特異性
ZFN和TALENs都是作為二聚體發揮作用的,其特異性是由DNA綁定的區域決定的,這個區域在每個剪切位點最多可以識別36bp。然而,在在II型CRISPR系統中的Cas9是由一種RNA引導的核酸,它的特異性是由PAM和PAM上游的20個引導核苷酸決定的。這表明,3』12個鹼基的「種子序列」是最關鍵的,而剩下的8個鹼基(非種子序列)甚至PAM序列都是可以錯配的。ZFN的特異性由一種不帶偏見的全基因組分析進行,並且發現存在頻率低,但是可以檢測到的脫靶事件的發生,其可以定義為一個高度有限的一部分。已經有研究表明,TALENs有比ZFN更低的細胞毒性和脫靶效率。
基於這個研究,TALENs誘導的CCR5特異性突變在CCR5的對偶基因上發生率是17%,而在高度同源的CCR2位點上只有1%。相反,CCR5特異性的ZFN的活性在這兩個位點是相在當的,CCR5位點的突變頻率是14%,而CCR2的是12%。幾個研究也報告了,CRISPR/Cas系統在細胞毒性評價或者DSB誘導的檢測(即,H2AX免疫染色)中都沒有明顯的脫靶現象。然而,最近的研究發現,CRISPR誘導的靶向不同的人類細胞的基因出現了顯著的脫靶現象。例如,靶向CCR5的CRSIPR/Cas9系統偶到的在CCR2上的脫靶切除的突變率為5-20%,這是非常接近之前討論的CCR5靶向的ZFN誘導的突變率。三個其他的小組利用更系統的方法在人類細胞中評估了CRISPR的脫靶活性,其結果表明CRISPR可能能夠發生目標不匹配,從而在預測的脫靶位點上引入微缺失或者插入(插入缺失)。此外,靶向位點的定位和內涵能夠顯著的影響gRNA識別他們的靶向目標,而在基因組序列中的「脫靶序列」也是一樣的。已經有報告說,脫靶效應能夠通過小心的控制Cas9的mRNA的濃度來克服。此外,在基因編輯的時候使用配對的Cas9的切口酶已經表明能夠顯著的減少至少1500倍的脫靶活性。
病毒為基礎的傳遞
ZFN基因可以通過慢病毒和腺病毒進行傳遞。當前,ZFNs導入體細胞是通過共轉染兩個慢病毒載體,每個載體編碼一個功能性異源二聚體對的一個單體。相反,腺病毒,但不是基於HIV的慢病毒,載體使用與TALEN的基因的傳遞,因為TALENs的大尺寸和TALE重復序列的種應用。Cas9也是一個較大的基因,並且其酶促死的版本也可以通過慢病毒進行傳遞,雖然也盛行的Cas9的穩定的表達對於細胞的毒性依然是不清楚的。
其他方面
ZFNs和TALENs都能夠在切割時產生粘性末端,因此可以使用標簽綁定,如果具有互補突出部分的雙鏈寡聚核苷酸(dsODN)是可以進行預測的。ZFNs和TALENs都可以在捐贈的質粒的基因組中引入同一個核酸靶向位點來實現。ZFNs和TALENs通過採取同源二聚體的方式從而獲得優勢,綁定門通過設計實現了重組(Ob-LiGaRe)。這種方法在使用的質粒中倒置了兩半的核酸酶的結合位點,這是在沒有改變接頭區的方向實現的,因此通過相同的ZFN/TALEN鹼基對能夠阻止連接產物的消化。因為CRISPR產生了一個非粘性末端,直接連接會遇到挑戰。最近的文章表明,具有Cas9n的gRNAs的鹼基對能夠誘導具有徒步部分的DSBs,並且促進dsODN的高效率的NHEJ介導的插入。雖然至今還沒有出版,但是進入的轉基因大小的DNA能夠通過引入在目標質粒的CRISPR/Cas9靶向位點的具有CRISPR/Cas的基因組使用。CRISPR/Cas系統相比較於ZFNs和TALENs具有幾個優勢,例如易於構建,花費低,並且產物具有可擴展性,並且能夠用於多個靶向基因組位點。
❷ 基因編輯技術概念股有哪些
基因測序是精準醫療的入口,是精準醫療的重要一環。通過對病人臨床版信息資料的完整收權集,對病人生物樣本的完整採集,並通過基因測序、分析技術對病人分子層面信息進行收集,最後通過利用生物信息學分析工具對所有信息進行整合並分析,從而使得醫生可以早期預測疾病的發生、可能的發展方向和疾病可能的結局,最後做出診斷。個股方面,根據產業鏈構成,建議關注三領域個股:測序技術水平發展方面,關注紫鑫葯業(002118)、達安基因(002030);累積基因組樣本領域,關注榮之聯(002642)、中源協和(600645)、仟源醫葯(300254)、新開源(300109);醫療機構合作方面,關注北陸葯業(300016)、千山葯機(300216)、迪安診斷(300244)、湯臣倍健(300146)。
❸ 基因編輯技術形式有哪些
ZFN
ZFN,即鋅指核糖核酸酶,由一個 DNA 識別域和一個非特異性核酸內切酶構成。DNA 識別域是由一系列 Cys2-His2鋅指蛋白(zinc-fingers)串聯組成(一般 3~4 個),每個鋅指蛋白識別並結合一個特異的三聯體鹼基。鋅指蛋白源自轉錄調控因子家族(transcription factor family),在真核生物中從酵母到人類廣泛存在,形成alpha-beta-beta二級結構。其中alpha螺旋的16氨基酸殘基決定鋅指的DNA結合特異性,骨架結構保守。對決定DNA結合特異性的氨基酸引入序列的改變可以獲得新的DNA結合特異性。多個鋅指蛋白可以串聯起來形成一個鋅指蛋白組識別一段特異的鹼基序列,具有很強的特異性和可塑性,很適合用於設計ZFNs。與鋅指蛋白組相連的非特異性核酸內切酶來自FokI的C端的96個氨基酸殘基組成的DNA剪切域(Kim et al., 1996)。FokI是來自海床黃桿菌的一種限制性內切酶,只在二聚體狀態時才有酶切活性(Kim et al., 1994),每個FokI單體與一個鋅指蛋白組相連構成一個ZFN,識別特定的位點,當兩個識別位點相距恰當的距離時(6~8 bp),兩個單體ZFN相互作用產生酶切功能。從而達到 DNA 定點剪切的目的。
TALEN
TALENs中文名是轉錄激活因子樣效應物核酸酶,TALENs是一種可靶向修飾特異DNA序列的酶,它藉助於TAL效應子一種由植物細菌分泌的天然蛋白來識別特異性DNA鹼基對。TAL效應子可被設計識別和結合所有的目的DNA序列。對TAL效應子附加一個核酸酶就生成了TALENs。TAL效應核酸酶可與DNA結合並在特異位點對DNA鏈進行切割,從而導入新的遺傳物質。相對鋅指核酸酶(zinc-finger nuclease, ZFN)而言,TALEN能夠靶向更長的基因序列,而且也更容易構建。但是直到現在,人們一直都沒有一種低成本的而且公開能夠獲得的方法來快速地產生大量的TALENs。
CRISPR
CRISPR是生命進化歷史上,細菌和病毒進行斗爭產生的免疫武器,簡單說就是病毒能把自己的基因整合到細菌,利用細菌的細胞工具為自己的基因復制服務,細菌為了將病毒的外來入侵基因清除,進化出CRISPR系統,利用這個系統,細菌可以不動聲色地把病毒基因從自己的染色體上切除,這是細菌特有的免疫系統。微生物學家10年前就掌握了細菌擁有多種切除外來病毒基因的免疫功能,其中比較典型的模式是依靠一個復合物,該復合物能在一段RNA指導下,定向尋找目標DNA序列,然後將該序列進行切除。許多細菌免疫復合物都相對復雜,其中科學家掌握了對一種蛋白Cas9的操作技術,並先後對多種目標細胞DNA進行切除。以往研究表明,通過這些介入,CRISPR能使基因組更有效地產生變化或突變,效率比TALEN(轉錄激活因子類感受器核酸酶)等其他基因編輯技術更高。但最近研究發現,雖然CRISPR有許多優點,在人類癌細胞系列中,它也可能產生大量「誤傷目標」,尤其是對不希望改變的基因做修改。
三種系統的比較
那麼,可能會有人疑問了,既然如此,這三種系統的區別和聯系又是什麼呢?小編特意從有效性,特異性,載體性及其它四個方面,進行了一個小小的總結。
有效性
在不同的基因位點基因靶向性的有效性都是不同的,並且這也依賴於每種細胞的轉染的效率。因此,只能點對點的比較靶向位點,細胞系和轉染方法,這樣的比較才有意義。基於我們課題組和其他課題組的ZFN和TALENs的靶向效率的實驗,我們在細胞系水平上進行了比較,雖然他們可能與不同的突變特徵有關。Chen的課題組的最近的研究進行了大規模的體外分析,發現TALENs在使用與上下游相關的序列的時候比ZFNs顯著的具有更多的突變產生。另一個組比較了TALENs和CRISPRs在人類ESCs細胞中的情況,觀察到,通過用CRISPR更換掉TALENs,在其他方面條件相同的情況下,通過產生更多的基因突變的克隆,本質上提高了效率。最近,功能上重新編碼的TALENs(reTALENs)已經得到了發展,並且在人類的iPSCs細胞中的基因編輯的有效性相比較於CRISPR得到了提高。但是這個研究發現,CRISPR比reTALENs能夠實現7-8倍的同源重組效率,並且其一定程度的比HE更有效率,擋雨ODN捐贈者進行比較。
特異性
ZFN和TALENs都是作為二聚體發揮作用的,其特異性是由DNA綁定的區域決定的,這個區域在每個剪切位點最多可以識別36bp。然而,在在II型CRISPR系統中的Cas9是由一種RNA引導的核酸,它的特異性是由PAM和PAM上游的20個引導核苷酸決定的。這表明,3』12個鹼基的「種子序列」是最關鍵的,而剩下的8個鹼基(非種子序列)甚至PAM序列都是可以錯配的。ZFN的特異性由一種不帶偏見的全基因組分析進行,並且發現存在頻率低,但是可以檢測到的脫靶事件的發生,其可以定義為一個高度有限的一部分。已經有研究表明,TALENs有比ZFN更低的細胞毒性和脫靶效率。
基於這個研究,TALENs誘導的CCR5特異性突變在CCR5的對偶基因上發生率是17%,而在高度同源的CCR2位點上只有1%。相反,CCR5特異性的ZFN的活性在這兩個位點是相在當的,CCR5位點的突變頻率是14%,而CCR2的是12%。幾個研究也報告了,CRISPR/Cas系統在細胞毒性評價或者DSB誘導的檢測(即,H2AX免疫染色)中都沒有明顯的脫靶現象。然而,最近的研究發現,CRISPR誘導的靶向不同的人類細胞的基因出現了顯著的脫靶現象。例如,靶向CCR5的CRSIPR/Cas9系統偶到的在CCR2上的脫靶切除的突變率為5-20%,這是非常接近之前討論的CCR5靶向的ZFN誘導的突變率。三個其他的小組利用更系統的方法在人類細胞中評估了CRISPR的脫靶活性,其結果表明CRISPR可能能夠發生目標不匹配,從而在預測的脫靶位點上引入微缺失或者插入(插入缺失)。此外,靶向位點的定位和內涵能夠顯著的影響gRNA識別他們的靶向目標,而在基因組序列中的「脫靶序列」也是一樣的。已經有報告說,脫靶效應能夠通過小心的控制Cas9的mRNA的濃度來克服。此外,在基因編輯的時候使用配對的Cas9的切口酶已經表明能夠顯著的減少至少1500倍的脫靶活性。
病毒為基礎的傳遞
ZFN基因可以通過慢病毒和腺病毒進行傳遞。當前,ZFNs導入體細胞是通過共轉染兩個慢病毒載體,每個載體編碼一個功能性異源二聚體對的一個單體。相反,腺病毒,但不是基於HIV的慢病毒,載體使用與TALEN的基因的傳遞,因為TALENs的大尺寸和TALE重復序列的種應用。Cas9也是一個較大的基因,並且其酶促死的版本也可以通過慢病毒進行傳遞,雖然也盛行的Cas9的穩定的表達對於細胞的毒性依然是不清楚的。
其他方面
ZFNs和TALENs都能夠在切割時產生粘性末端,因此可以使用標簽綁定,如果具有互補突出部分的雙鏈寡聚核苷酸(dsODN)是可以進行預測的。ZFNs和TALENs都可以在捐贈的質粒的基因組中引入同一個核酸靶向位點來實現。ZFNs和TALENs通過採取同源二聚體的方式從而獲得優勢,綁定門通過設計實現了重組(Ob-LiGaRe)。這種方法在使用的質粒中倒置了兩半的核酸酶的結合位點,這是在沒有改變接頭區的方向實現的,因此通過相同的ZFN/TALEN鹼基對能夠阻止連接產物的消化。因為CRISPR產生了一個非粘性末端,直接連接會遇到挑戰。最近的文章表明,具有Cas9n的gRNAs的鹼基對能夠誘導具有徒步部分的DSBs,並且促進dsODN的高效率的NHEJ介導的插入。雖然至今還沒有出版,但是進入的轉基因大小的DNA能夠通過引入在目標質粒的CRISPR/Cas9靶向位點的具有CRISPR/Cas的基因組使用。CRISPR/Cas系統相比較於ZFNs和TALENs具有幾個優勢,例如易於構建,花費低,並且產物具有可擴展性,並且能夠用於多個靶向基因組位點。
❹ 基因組編輯技術有哪些優點及弊端,詳述
1、優點:由於基因技術在生物工程中的特殊作用,基因技術革命是繼工業革命、信息革命之後對人類社會產生深遠影響的一場革命。
它在基因制葯、基因診斷、基因治療等技術方面所取得的革命性成果,將極大地改變人類生命和生活的面貌。同時,基因技術所帶來的商業價值無可估量。
從事此類技術研究和開發企業的發展前景無疑十分廣闊。前期美國股市基因技術類股票的大幅上漲表明投資者對此類公司前途看好。我國的基因技術研究取得了不少成果,相關上市公司值得關注。
2、缺點:基因工程產品的技術含量非常高,從目的基因的取得到表達載體的構建都是十分煩瑣而艱巨的工作,必須在實驗室中進行大量的工作。
因此,基因工程產品的前期研究和開發投入(R&D)非常高,尤其是對細胞因子和重組葯物的生產只要取得了具有高表達量的生產菌株,掌握分離和純化技術,利用普通的發酵罐就能生產。
如大舉介入生物醫葯領域的日本麒麟株式會社原來是啤酒生產企業,掌握了生產技術後,利用原有的發酵設備便很快在細胞因子的生產領域佔有了一席之地。
(4)基因編輯技術股票擴展閱讀:
基因編輯已經開始應用於基礎理論研究和生產應用中,這些研究和應用,有助於生命科學的許多領域,從研究植物和動物的基因功能到人類的基因治療。下面主要介紹基因編輯在動植物上的應用。
基因編輯和牛體外胚胎培養等繁殖技術結合,允許使用合成的高度特異性的內切核酸酶直接在受精卵母細胞中進行基因組編輯。
CRISPR -Cas9進一步增加了基因編輯在動物基因靶向修飾的應用范圍。CRISPR-Cas9允許通過細胞質直接注射(CDI)從而實現對哺乳動物受精卵多個靶標的一次性同時敲除(KO)。
❺ 世界首例基因編輯克隆犬誕生 基因編輯概念股票有哪些
基因編輯概念股:
❻ 基因編輯技術目前哪家公司最專業最有實力
我來回答,就在剛剛過去的世界生命科學大會上,孟山都公司的 精準育種、微生物、大數據技術獲得了大家的關注,會上孟山都展示了其轉基因技術的實力和成果,也提出在未來,以CRISPR為首的基因編輯等精準育種技術讓作物育種變得更快、更准。
❼ 被中國科學家差點搞砸的基因編輯技術為什麼還那麼火爆
試題答案:人體內每個細胞內有23對染色體;包括22對常染色體和一對性染色體,性染色體包括:X染色體和Y染色體.含有一對X染色體的受精卵發育成女性,而具有一條X染色體和一條Y染色體者則發育成男性.即男性染色體的組成:22對常染色體+XY,女性染色體的組成:22對常染色體+XX,因此人類基因組計劃要測定的人類染色體數應該是22條常染色體和兩條性染色體X和Y,即24條.故選:C