當前位置:首頁 » 走勢知識 » 股票對數收益率與時間序列分析

股票對數收益率與時間序列分析

發布時間: 2024-08-06 01:04:41

Ⅰ 如何用stata求股指的對數收益率

gen id=_n
tsset id
gen r=d.lnp

Ⅱ 2020-03-28 線性時間序列模型

課程採用Ruey S. Tsay的《金融數據分析導論:基於R語言》(Tsay 2013 ) (An Introction to Analysis of Financial Data with R)作為主要教材之一。

時間序列的線性模型,包括:

股價序列呈現緩慢的、非單調的上升趨勢, 局部又有短暫的波動。

可口可樂公司每季度發布的每股盈利數據。 讀入:

時間序列圖:

序列仍體現出緩慢的、非單調的上升趨勢,又有明顯的每年的周期變化(稱為季節性), 還有短期的波動。

下面用基本R的 plot() 作圖並用不同顏色標出不同季節。

現在可以看出,每年一般冬季和春季最低, 夏季最高,秋季介於夏季和冬季之間。

收益率在0上下波動,除了個別時候基本在某個波動范圍之內。

用xts包的 plot() 函數作圖:

聚焦到2004年的數據:

紅色是6月期國債利率, 黑色是3月期國債。 一般6月期高, 但是有些時期3月期超過了6月期,如1980年:

如圖標普500月收益率那樣的收益率數據基本呈現出在一個水平線(一般是0)上下波動, 且波動范圍基本不變。 這樣的表現是時間序列「弱平穩序列」的表現。
弱平穩需要一階矩和二階矩有限。某些分布是沒有有限的二階矩的,比如柯西分布, 這樣的分布就不適用傳統的線性時間序列理論。

稍後給出弱平穩的理論定義。

如圖2可口可樂季度盈利這樣的價格序列則呈現出水平的上下起伏, 如果分成幾段平均的話, 各段的平均值差距較大。 這體現出非平穩的特性。
以下為一堆公式推導,具體查看: http://www.math.pku.e.cn/teachers/lidf/course/fts/ftsnotes/html/_ftsnotes/fts-tslin.html#fig:tslin-intro-sp02

時間序列
自協方差函數
弱平穩序列

圖6 是IBM股票月度簡單收益率對標普500收益率的散點圖。 從圖中看出, 兩者有明顯的正向相關關系。
對於不獨立的樣本, 比如時間序列樣本, 也可以計算相關系數, 其估計合理性需要一些模型假設。

對於聯合分布非正態的情況, 有時相關系數不能很好地反映X和Y的正向或者負向的相關。 斯皮爾曼(Spearman)相關系數是計算X的樣本的秩(名次)與Y的樣本的秩之間的相關系數, 也稱為Spearman rank correlation。

另一種常用的非參數相關系數是肯德爾tau(Kendall』s )系數, 反映了一致數對和非一致數對之間的差別。
即兩個觀測的分量次序一致的概率減去分量次序相反的概率。 一致的概率越大,說明兩個的正向相關性越強。

對IBM收益率與標普收益率數據計算這三種相關系數:

自相關函數 (Autocorrelation function, ACF)參見 (何書元 2003 ) P.131 §4.2的例2.1。 原始文獻: MAURICE STEVENSON BARTLETT, On the Theoretical Specification and Sampling Properties of Auto-Correlated Time Series, Journal of the Royal Statistical Society (Supplement) 8 (1946), pp. 24-41.

在基本R軟體中, acf(x) 可以估計時間序列 x 的自相關函數並對其前面若干項畫圖。

例:CRSP的第10分位組合的月對數收益率, 1967-1到2009-12。 第10分位組合是NYSE、AMEX、NASDAQ市值最小的10%股票組成的投資組合, 每年都重新調整。

圖6: CRSP第10分位組合月對數收益率

用 acf() 作時間序列的自相關函數圖:

acf() 的返回值是一個列表,其中 lag 相當於, acf 相當於。 用 plot=FALSE 取消默認的圖形輸出。

有研究者認為小市值股票傾向於在每年的一月份有正的收益率。
為此,用對的檢驗來驗證。 如果一月份有取正值的傾向, 則相隔12個月的值會有正相關。

計算統計量的值,檢驗p值:

值小於0.05, 這個檢驗的結果支持一月份效應的存在性。

Ljung和Box(Ljung and Box 1978 )對Box和Pierce(Box and Pierce 1970 )提出了混成統計量(Portmanteau statistic)
檢驗方法進行了改進

在R軟體中, Box.test(x, type="Ljung-Box") 執行Ljung-Box白雜訊檢驗。 Box.test(x, type="Box-Pierce") 執行Box-Pierce混成檢驗。 用 fitdf= 指定要減去的自由度個數。

檢驗IBM股票月收益率是否白雜訊。
考慮IBM股票從1926-01到2011-09的月度收益率數據, 簡單收益率和對數收益率分別考慮。
讀入數據:

讀入的是簡單收益率的月度數據。 作ACF圖:

從ACF來看月度簡單收益率是白雜訊。
作Ljung-Box白雜訊檢驗, 分別取和:

在0.05水平下均不拒絕零假設, 支持IBM月度簡單收益率是白雜訊的零假設。
從簡單收益率計算對數收益率, 並進行LB白雜訊檢驗:

在0.05水平下不拒絕零假設。

Box-Pierce檢驗和Ljung-Box檢驗受到取值的影響, 建議採用, 且序列為季度、月度這樣的周期序列時, 應取為周期的整數倍。
對CRSP最低10分位的資產組合的月簡單收益率作白雜訊檢驗。
此組合的收益率序列的ACF:

針對和作Ljung-Box白雜訊檢驗:

在0.05水平下均拒絕零假設, 認為CRSP最低10分位的投資組合的月度簡單收益率不是白雜訊。

有效市場假設認為收益率是不可預測的, 也就不會有非零的自相關。 但是,股價的決定方式和指數收益率的計算方式等可能會導致在觀測到的收益率序列中有自相關性。 高頻金融數據中很常見自相關性。

常見的白雜訊檢驗還有TREVOR S. BREUSCH (1978) 和LESLIE G. GODFREY (1978)提出的拉格朗日乘子法檢驗(LM檢驗)。 零假設為白雜訊, 對立假設為AR、MA或者ARMA。 參見:

設是獨立同分布的二階矩有限的隨機變數, 稱為獨立同分布白雜訊(white noise)。 最常用的白雜訊一般假設均值為零。 如果獨立同分布, 稱為高斯(Gaussian)白雜訊或正態白雜訊。

白雜訊序列的自相關函數為零(除外)。

實際應用中如果樣本自相關函數近似為零 (ACF圖中都位於控制線之內或基本不超出控制線), 則可認為該序列是白雜訊的樣本。

如:IBM月度收益率可以認為是白雜訊(見例 3.3 ); CRSP最低10分位投資組合月度收益率不是白雜訊(見例 3.4 )。

不是所有的弱平穩時間序列都有這樣的性質。 非平穩序列更是不需要滿足這些性質。

公式就不贅述

如果從時間序列的一條軌道就可以推斷出它的所有有限維分布, 就稱其為嚴平穩遍歷的。 這里不給出遍歷性的嚴格定義, 僅給出一些嚴平穩遍歷的充分條件。 可以證明, 寬平穩的正態時間序列是嚴平穩遍歷的, 由零均值獨立同分布白雜訊產生的線性序列是嚴平穩遍歷的。

Tsay, Ruey S. 2013. 金融數據分析導論:基於R語言 . 機械工業出版社.

何書元. 2003. 應用時間序列分析 . 北京大學出版社.

Box, GEP, and D. Pierce. 1970. 「Distribution of Resial Autocorelations in Autoregressive-Integrated Moving Average Time Series Models.」 J. of American Stat. Assoc. 65: 1509–26.

Ljung, G., and GEP Box. 1978. 「On a Measure of Lack of Fit in Time Series Models.」 Biometrika 66: 67–72.

參考學習資料: http://www.math.pku.e.cn/teachers/lidf/course/fts/ftsnotes/html/_ftsnotes/fts-tslin.html#fig:tslin-intro-sp02

Ⅲ 金融時間序列分析用R語言畫簡單收益率和對數收益率的ACF圖!

acf(int[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly

acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
log return')

Box.test(int[,2], lag = 5, type = "Ljung-Box")
Box.test(int[,2], lag = 10, type = "Ljung-Box")
Box.test(int.l[,2], lag = 5, type = "Ljung-Box")
Box.test(int.l[,2], lag = 10, type = "Ljung-Box")

運行結果有以下錯誤,怎麼辦?

> int <- read.table("d-intc7208.txt", head=T)
錯誤於file(file, "rt") : 無法打開鏈結
此外: 警告信息:
In file(file, "rt") :
無法打開文件'd-intc7208.txt': No such file or directory

+ acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
錯誤: 意外的符號 in:
"
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int"
> log return')
錯誤: 意外的符號 in "log return"

Ⅳ 有一組股價的數據,想用eviews來處理收益率,求問怎麼弄啊~~~老師要求使用對數求收益率

收益率定為R,股價定為P,收益率為R=lnP(t)-lnP(t-1)

Ⅳ 股票收益率為什麼要用對數收益率,請問各

在命令窗口中輸入 genr dr=log(r) 其中,log()為自然對數,r為指數收益率,dr為對數轉換後的新變數

Ⅵ "由一個具有常數有限無條件均值和方差的平穩隨機過程產生的"

(1)式給出的均值方程是一個帶有誤差項的外生變數的函數。由於是以前面信息為基礎的一期向前預測方差,所以稱為條件均值方程。

(2)式給出的方程中: 為常數項, (ARCH項)為用均值方程的殘差平方的滯後項, (GARCH項)為上一期的預測方差。此方程又稱條件方差方程,說明時間序列條件方差的變化特徵。

通過以下六步進行求解:

本文選取哈飛股份2009年全年的股票日收盤價,採用Eviews 6.0的GARCH工具預測股票收益率波動率。具體計算過程如下:

第一步:計算日對數收益率並對樣本的日收益率進行基本統計分析,結果如圖1和圖2。

日收益率採用JP摩根集團的對數收益率概念,計算如下:

其中Si,Si-1分別為第i日和第i-1日股票收盤價。

圖1 日收益率的JB統計圖

對圖1日收益率的JB統計圖進行分析可知:

(1)標准正態分布的K值為3,而該股票的收益率曲線表現出微量峰度(Kurtosis=3.gt;3),分布的凸起程度大於正態分布,說明存在著較為明顯的「尖峰厚尾」形態;

(2)偏度值與0有一定的差別,序列分布有長的左拖尾,拒絕均值為零的原假設,不屬於正態分布的特徵;

(3)該股票的收益率的JB統計量大於5%的顯著性水平上的臨界值5.99,所以可以拒絕其收益分布正態的假設,並初步認定其收益分布呈現「厚尾」特徵。

以上分析證明,該股票收益率呈現出非正態的「尖峰厚尾」分布特徵,因此利用GARCH模型來對波動率進行擬合具有合理性。

第二步:檢驗收益序列平穩性

在進行時間序列分析之前,必須先確定其平穩性。從圖2日收益序列的路徑圖來看,有比較明顯的大的波動,可以大致判斷該序列是一個非平穩時間序列。這還需要嚴格的統計檢驗方法來驗證,目前流行也是最為普遍應用的檢驗方法是單位根檢驗,鑒於ADF有更好的性能,故本文採用ADF方法檢驗序列的平穩性。

從表1可以看出,檢驗t統計量的絕對值均大於1%、5%和10%標准下的臨界值的絕對值,因此,序列在1%的顯著水平下拒絕原假設,不存在單位根,是平穩序列,所以利用GARCH(1,1)模型進行檢驗是有效的。

圖2 日收益序列圖

表1ADF單位根檢驗結果

第三步:檢驗收益序列相關性

收益序列的自相關函數ACF和偏自相關函數PACF以及Ljung-Box-Pierce Q檢驗的結果如表3(滯後階數 =15)。從表4.3可以看出,在大部分時滯上,日收益率序列的自相關函數和偏自相關函數值都很小,均小於0.1,表明收益率序列並不具有自相關性,因此,不需要引入自相關性的描述部分。Ljung-Box-Pierce Q檢驗的結果也說明日收益率序列不存在明顯的序列相關性。

表2自相關檢驗結果

第四步:建立波動性模型

由於哈飛股份收益率序列為平穩序列,且不存在自相關,根據以上結論,建立如下日收益率方程:

(3)

(4)

第五步:對收益率殘差進行ARCH檢驗

平穩序列的條件方差可能是常數值,此時就不必建立GARCH模型。故在建模前應對收益率的殘差序列εt進行ARCH檢驗,考察其是否存在條件異方差,收益序列殘差ARCH檢驗結果如表3。可以發現,在滯後10階時,ARCH檢驗的伴隨概率小於顯著性水平0.05,拒絕原假設,殘差序列存在條件異方差。在條件異方差的理論中,滯後項太多的情況下,適宜採用GARCH(1,1)模型替代ARCH模型,這也說明了使用GARCH(1,1)模型的合理性。

表3日收益率殘差ARCH檢驗結果

第六步:估計GARCH模型參數,並檢驗

建立GARCH(1,1)模型,並得到參數估計和檢驗結果如表4。其中,RESID(-1)^2表示GARCH模型中的參數α,GARCH(-1)表示GARCH模型中的參數β,根據約束條件α+βlt;1,有RESID(-1)^2+GARCH(-1)=0.95083<1,滿足約束條件。同時模型中的AIC和SC值比較小,可以認為該模型較好地擬合了數據。

熱點內容
杭州印花稅比例 發布:2024-12-26 10:00:32 瀏覽:29
華軟軟體股票代號 發布:2024-12-26 10:00:21 瀏覽:11
市盈率率都多少了 發布:2024-12-26 09:59:35 瀏覽:583
服裝加工合同需要交納印花稅嗎 發布:2024-12-26 09:55:29 瀏覽:142
學炒股軟體排行榜 發布:2024-12-26 09:51:23 瀏覽:23
農產品暴漲玉米入牛市 發布:2024-12-26 09:45:05 瀏覽:894
能網上直接開股票賬戶嗎 發布:2024-12-26 09:36:59 瀏覽:287
如何在股票軟體中買基金 發布:2024-12-26 09:35:51 瀏覽:509
集中供熱企業的印花稅 發布:2024-12-26 09:23:51 瀏覽:95
華泰集團化工股份有限公司 發布:2024-12-26 09:23:21 瀏覽:929